LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS
 FIRST SEMESTER - APRIL 2010
 MT 1500 - ALG.,ANAL.GEOMET. CAL. \& TRIGN. - I

Date \& Time: 28/04/2010 / 9:00-12:00

PART - A

Answer ALL the questions

($\mathbf{1 0} \times 2=20$ marks)

1) Write down the $\mathrm{n}^{\text {th }}$ derivative of $\frac{1}{(2 x+3)^{2}}$.
2) Find the slope of the straight line $\frac{l}{r}=\cos (\theta-\alpha)+\mathrm{e} \cos \theta$.
3) Write the formula for the radius of curvature when the pedal equation of the curve is given.
4) Define evolute of a curve.
5) If α, β, v are the roots of the equation $\mathrm{x}^{3}+\mathrm{px}^{2}+\mathrm{qx}+\mathrm{r}=0$ find the value of $\sum \alpha^{2}$.
6) Define a reciprocal equation.
7) Prove that $\cosh ^{-1} x=\log \left(x+\sqrt{x^{2}-1}\right)$.
8) Show that $1-\tanh ^{2} x=\operatorname{sech}^{2} x$.
9) Define pole and polar of a conic.
10) Define diameter and conjugate diameters of an ellipse.

PART - B

Answer any FIVE questions

11) Show that in the parabola $y^{2}=4 a x$, the subtangent at any point is double the abscissa and the subnormal is constant.
12) Find the $\mathrm{n}^{\text {th }}$ derivative of $\sin ^{3} x \cos ^{2} x$.
13) Using Lagrange's multipliers find the maximum and minimum value of

$$
\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{x}+\mathrm{y}+\mathrm{z} \text { subject to } \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1 .
$$

14) Solve the equation $\mathrm{x}^{3}-4 x^{2}-3 x+18=0$ given that two of its roots are equal.
15) If α, β, v are the roots of $\mathrm{x}^{3}+\mathrm{px}^{2}+\mathrm{qx}+\mathrm{r}=0$.prove that $(\alpha+\beta)(\beta+v)(v+\alpha)=\mathrm{r}-\mathrm{pq}$.
16) Expand $\cos 6 \theta$ in terms of $\sin \theta$.
17) Show that the eccentric angles at the extremities of a pair of semi-conjugate diameters of an ellipse differ by a right angle .
18) Find the equations of the asymptotes and of the conjugate hyperbola given that the hyperbola has eccentricity $\sqrt{2}$, focus at the origin and the directrix along $x+y+1=0$.

PART - C

Answer any TWO questions

$$
(\mathbf{2} \times 20=40 \text { marks })
$$

19. a) If $\mathrm{y}=\mathrm{a} \cos (\log \mathrm{x})+\mathrm{b} \sin (\log \mathrm{x})$ then prove that $\mathrm{x}^{2} y_{n+2}+(2 n+1) x y_{n+1}+\left(n^{2}+1\right) y_{n}=0$.
b) Find the angle of intersection of the curves $\mathrm{r}=\frac{a}{1+\cos \theta}$ and $\mathrm{r}=\frac{b}{1-\cos \theta}$.
20. a) Find the evolute of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
b) Solve $6 x^{5}+11 x^{4}-33 x^{3}-33 x^{2}+11 x+6=0$.
21. a) Calculate to two places of decimals the positive root of the equation $x^{3}+24 x-50=0$ by Horner's method.
b) If $\tan (\alpha+i \beta)=x+i y$ prove that $x^{2}+y^{2}+2 x \cot 2 \alpha=1$.
22. a) Prove that $1-\frac{1}{2} \cos \theta+\frac{1 \cdot 3}{2 \cdot 4} \cos 2 \theta-\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \cos 3 \theta+\ldots \infty=\frac{\cos \frac{\theta}{4}}{\sqrt{2 \cos \frac{\theta}{2}}}$.
b) A rectangular hyperbola whose centre is C is cut by any circle of radius r in four points $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}$. Prove that $\mathrm{CP}^{2}+C Q^{2}+C R^{2}+C S^{2}=4 r^{2}$.
