LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION – MATHEMATICS

FIRST SEMESTER - APRIL 2010

MT 1500 - ALG., ANAL.GEOMET. CAL. & TRIGN. - I

Date & Time: 28/04/2010 / 9:00 - 12:00 Dept. No.

PART - A

Answer ALL the questions

- 1) Write down the nth derivative of $\frac{1}{(2x+3)^2}$.
- 2) Find the slope of the straight line $\frac{l}{r} = \cos(\theta \alpha) + e \cos \theta$.
- 3) Write the formula for the radius of curvature when the pedal equation of the curve is given.
- 4) Define evolute of a curve.
- 5) If α, β, ν are the roots of the equation $x^3 + px^2 + qx + r = 0$ find the value of $\sum \alpha^2$.
- 6) Define a reciprocal equation.
- 7) Prove that $\cosh^{-1} x = \log(x + \sqrt{x^2 1})$.
- 8) Show that 1-tanh² x = sech² x.
- 9) Define pole and polar of a conic.
- 10) Define diameter and conjugate diameters of an ellipse.

PART - B

Answer any FIVE questions

- 11) Show that in the parabola $y^2 = 4ax$, the subtangent at any point is double the abscissa and the subnormal is constant.
- 12) Find the nth derivative of $\sin^3 x \cos^2 x$.
- 13) Using Lagrange's multipliers find the maximum and minimum value of

f(x,y,z) = x+y+z subject to $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$.

- 14) Solve the equation $x^{3}-4x^{2}-3x+18=0$ given that two of its roots are equal.
- 15) If α, β, ν are the roots of $x^3 + px^2 + qx + r = 0$ prove that $(\alpha + \beta)(\beta + \nu)(\nu + \alpha) = r pq$.

$(5 \times 8 = 40 \text{ marks})$

 $(10 \times 2 = 20 \text{ marks})$

Max.: 100 Marks

 $(10 \times 2 = 20 \text{ marks})$

- 16) Expand $\cos \theta$ in terms of $\sin \theta$.
- 17) Show that the eccentric angles at the extremities of a pair of semi-conjugate diameters of an ellipse differ by a right angle .
- 18) Find the equations of the asymptotes and of the conjugate hyperbola given that the hyperbola has eccentricity $\sqrt{2}$, focus at the origin and the directrix along x + y + 1 = 0.

PART - C

Answer any TWO questions

 $(2 \times 20 = 40 \text{ marks})$

19. a) If $y = a\cos(\log x) + b\sin(\log x)$ then prove that $x^2 y_{n+2} + (2n+1)xy_{n+1} + (n^2+1)y_n = 0$.

- b) Find the angle of intersection of the curves $r = \frac{a}{1 + \cos \theta}$ and $r = \frac{b}{1 \cos \theta}$.
- 20. a) Find the evolute of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
 - b) Solve $6x^5 + 11x^4 33x^3 33x^2 + 11x + 6 = 0$.
- 21. a) Calculate to two places of decimals the positive root of the equation
 - $x^3 + 24x 50 = 0$ by Horner's method.
 - b) If $\tan(\alpha + i\beta) = x + iy$ prove that $x^2 + y^2 + 2x \cot 2\alpha = 1$.
- 22. a) Prove that $1 \frac{1}{2}\cos\theta + \frac{1\cdot 3}{2\cdot 4}\cos 2\theta \frac{1\cdot 3\cdot 5}{2\cdot 4\cdot 6}\cos 3\theta + \dots = \frac{\cos\frac{\theta}{4}}{\sqrt{2\cos\frac{\theta}{2}}}$.
 - b) A rectangular hyperbola whose centre is C is cut by any circle of radius r in four points P, Q, R, S. Prove that $CP^2 + CQ^2 + CR^2 + CS^2 = 4r^2$.

\$\$\$\$\$\$